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fMRI-Based Brain Disease Diagnosis:
A Graph Network Approach

Wei Tong , Yong-Xia Li, Xiao-Yan Zhao, Qi-Qi Chen, Yu-Bing Gao, Ping Li , Member, IEEE,
and Edmond Q. Wu , Senior Member, IEEE

Abstract—As a non-invasive brain imaging technology, func-
tional magnetic resonance imaging (fMRI) provides a basic tool
for brain functional network modeling and brain disease diagno-
sis. Problems, such as large number of parameters, low training
efficiency, and poor interpretability, are encountered in main-
stream models because of the high complexity of fMRI and brain
networks. To solve these problems, a novel structure feature com-
bined graph neural network (SFC-GNN) with a low number of
parameters is proposed. In particular, SFC-GNN is composed of
1) the graph convolution layer of the brain region perception and
2) the node pooling layer of the graph structure feature (GSF).
It also receives the sparse brain graph modeled by each sub-
ject’s fMRI as input. Especially, the GSF layer can select brain
regions that are important for classification, thereby localizing all
active regions related to brain disease. Moreover, a group network
is constructed according to the correlation among subjects, and
SFC-GNN can be extended further to a node classification model
to achieve better diagnosis performance. The proposed method
has been validated on the ABIDE and ADNI datasets, thereby
showing the effectiveness of our proposed method in various
experiments.

Index Terms—Brain functional network, functional magnetic
resonance imaging, brain disease diagnosis, graph-based model.

I. INTRODUCTION

AS THE most complex organ of the human body, the
brain has highly complex structural and functional char-

acteristics. Many synapses transmit the excitation or inhibition
generated by neurons to each other to coordinate each region
of the brain, thereby forming a dynamic brain functional
network. The research of brain functional network aims to
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understand the working mechanism of the brain and the
principles of brain diseases to protect the brain from the
occurrence of various brain diseases. Previous studies [1], [2]
have shown a certain correlation between brain functional
networks and most neurological diseases, so the changes
in topology and connection in the brain functional network
can provide a reference for the diagnosis of brain diseases.
Modern brain imaging technology provides the basis for brain
network modeling. Among brain imaging technologies, func-
tional magnetic resonance imaging (fMRI), as a representative
non-invasive technology, has been widely used. fMRI has a
good spatial resolution and can provide quantitative analysis
of brain regions. Therefore, it becomes a useful tool for the
modeling of brain functional networks.

Hemoglobin in human blood exhibits different magnetic
properties under various oxygen contents. Once the oxy-
genated hemoglobin content increases, the magnetic resonance
signal also rises. This phenomenon is called the blood oxygen
level-dependent (BOLD) effect. When performing a specific
task, oxygenated blood flows into the brain region respon-
sible for that function and causes changes in the magnetic
resonance signal. fMRI can detect this kind of change in mag-
netic resonance signal [3], which enables the visualization of
brain metabolism [1], [4]. Resting-state fMRI refers to the
fMRI data obtained in a quiet and resting-state of a subject
without performing any specific tasks. It has a consistent and
stable functional pattern [5] and can reflect the general state
of the non-specific brain and has relatively clear physiologi-
cal and pathological significance. Resting-state fMRI has been
widely used in clinical studies, such as in cognitive neuro-
science and clinical psychiatry, including disease monitoring
and treatment [2], pharmacological efficacy research [6], and
biomarker discovery [7]. Therefore, the resting-state fMRI is
adopted to conduct brain functional network construction and
disease diagnosis.

The main contributions of this paper are presented as
follows:

1) Based on the graph convolution layer of brain func-
tional region perception and the graph pooling layer of
structure feature selection, an interpretable graph classifica-
tion model called structure feature combined graph neural
network (SFC-GNN) is designed for brain disease diagnosis.
The network takes sparse brain graph as input and designs
a special pooling layer to select nodes that are important for
diagnosis tasks, which finds the brain regions related to disease
and reduces computational time.
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2) Based on the brain functional graph embedding gen-
erated by SFC-GNN, a node classification model with a
group network is further designed to study the correlations
among different subjects. From the experiment, our method
demonstrates high advantages over other tested methods.

3) In addition, transfer learning from autism to Alzheimer’s
disease is also conducted to further improve the diagnos-
tic accuracy of Alzheimer’s disease and reveal the potential
correlation between the two brain diseases.

The remainder of this paper is organized as follows.
Section II introduces the related works for brain disease
diagnosis. Section III describes the details of the proposed
sparse brain functional graph, SFC-GNN, and group network.
Section IV conducts extensive experiments to illustrate the
effectiveness of our method. Section V summarizes this
paper.

II. RELATED WORK

Many studies have used brain functional networks instead
of original fMRI data to infer brain cognition and neural
development or to predict and diagnose brain damage and
diseases.

A. Machine Learning-Based Method

Many of the earlier brain network analysis tools were
developed with machine learning models. Rosenberg et al. [8]
developed a simple linear model to demonstrate that the brain
functional network can provide a broadly applicable neural
marker for the symptoms of attention deficit hyperactivity
disorder. Ball et al. [9] adopted a random forest (RF)-based
feature selection method to identify the discriminative edges
of the neonatal brain functional connectivity network and then
used a nonlinear support vector machine (SVM) to classify
premature and term infants. Challis et al. [10] designed a
Bayesian Gaussian process logistic regression model for the
diagnosis of Alzheimer’s disease. However, these types of
disease diagnosis methods have poor model fitting and gener-
alization ability, which is difficult to achieve ideal results in
practical application.

B. Deep Learning-Based Method

Many neural network-based fMRI analysis methods have
been proposed with the development of deep learning.
Considering that fMRI data are embedded in the spatiotem-
poral dimension, recurrent neural networks are suitable for
fMRI analysis. Cui et al. [11] designed a new deep recurrent
network framework, which achieved better results than those
of shallow models, to identify brain functional networks with
multiple time scales. Dvornek et al. [12] used the long short-
term memory (LSTM) structure to design a multi-task learning
framework to identify autistic patients, generate meaningful
functional communities, and improve the interpretability of the
model. Kawahara et al. [13] proposed BrainNetCNN for the
prediction of the clinical neurodevelopment of brain networks
by utilizing the topology of brain networks and achieved
superior performance over other methods.

C. Graph Network-Based Method

Graph network-based methods i.e., graph convolution net-
work (GCN) have unique advantages in describing the
functional characteristics of the brain, which can con-
sider the important topological properties of brain networks.
Kazi et al. [14] and Parisot et al. [15] considered each subject
as a node in the graph and integrated phenotypic information
into edge weights to predict brain diseases. Li et al. [16]
developed an interpretable GNN for fMRI-based biomarker
analysis, which could determine the biomarkers that corre-
sponded to specific tasks. BrainGNN [17] adopted a ROI-
aware graph convolution kernel to extract the functional and
topological information of fMRI for simultaneous learning
and achieved higher classification accuracy than traditional
machine learning-based and convolutional neural network-
based methods. Gadgil et al. [18] proposed a graph con-
volution model to combine spatiotemporal information for
predicting the genders and ages of adolescents and achieved
higher classification accuracy than recurrent neural networks.
Yao et al. [19] designed a multi-spatial-scale triple graph con-
volutional network to analyze brain function and structural
connection and achieved better results than the single-scale
GNN in the diagnosis of Alzheimer’s disease. Zhang and
Wang [20] proposed a graph isomorphic network for autism
diagnosis, which also achieved high classification accuracy.
Li et al. [21] introduced transfer learning into the diagno-
sis task of Alzheimer’s disease and autism and proposed
an integrated framework to combine hierarchical GCN and
brain transfer learning to improve the diagnostic accuracy of
diseases.

D. Novelty of the Work

Our SFC-GNN is designed according to the idea of
BrainGNN [17], in which each subject is constructed as a
graph and adopted as input to the graph classification model.
However, different from BrainGNN, the desiged graph pool-
ing layer can combine the graph structure and node features
to obtain better performance of important nodes. Besides,
SFC-GNN is extended to a node classification model by con-
structing a group network, which can further improve the
performance.

III. PROPOSED METHOD

A. Definition of Brain Functional Graph

Assuming that the whole brain can be divided into N brain
functional regions, an undirected weighted brain functional
graph can be defined as G = (V, E). The nodes in the graph
represent the set of predefined brain functional regions (i.e.,
V = {v1, v2, . . . , vN}), and the edges in the graph repre-
sent the set of connectivity among brain functional regions.
If (vi, vj) ∈ E , then the two brain functional regions i and j,
which corresponds to the weight of an edge eij ∈ R

+ and
eij = eji, have a connection, respectively; if (vi, vj) /∈ E , then
eij = 0. Thus, an adjacency matrix E = [eij] ∈ R

N×N can be
obtained to represent the connection among brain functional
regions. In addition, for i-th node in the graph, hi is defined
as its feature vector.
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Fig. 1. Brain region perception-based graph convolution layer: RaGCN.

Specific to the construction of brain functional graph, the
fMRI image in each moment is divided into N brain func-
tional regions, and the average of all voxel values for each
brain functional region is calculated to represent the brain
functional region. Therefore, a corresponding average time
series of BOLD signals can be obtained from each brain func-
tional region, and a total of N average time series can be
obtained from the images of the entire brain. The partial cor-
relation coefficient matrix is used to construct the edge and
adjacency matrix of the brain functional graph, and a thresh-
old proportion is set to construct the sparse matrix. That is,
the partial correlation coefficient values between pairs of brain
functional regions are sorted. The brain functional regions with
the highest partial correlation coefficient values are considered
connected, that is, they correspond to the undirected edges in
the brain functional graph. Other brain functional regions with
low partial correlation coefficient values are considered to have
no connection, and the corresponding edge weights are set to
zero. The diagonal elements of the partial correlation matrix
are all 1, but in the brain functional graph, no edge connec-
tion exists between the node with itself, that is, (vi, vi) /∈ E ,
so eii = 0. Thus, a symmetric sparse adjacency matrix E with
all zero diagonal elements is finally obtained.

Four features are considered for the node feature H in the
brain functional graph: the mean and standard deviation of
the BOLD signal that correspond to each node, the degree
of the node, and the correlation coefficient between the nodes.
Features are spliced to form the feature vector hi of the current
node i, we have hi ∈ R

3+N . Therefore, the corresponding brain
functional graph of fMRI is composed of the adjacency matrix
E and the node feature vector set H.

B. Graph Classification-Based Disease Diagnosis Model

A graph classification-based network model of the brain
functional graph is proposed. First, the graph nodes are embed-
ded in a low-dimensional feature space and divided into dif-
ferent communities. Second, the state transfer and information
aggregation between nodes are performed, and some nodes
with larger weights are retained by node selection, which
reduces calculation and improves interpretability. Finally, the
information extracted by the model is aggregated into a vec-
tor and inputted into the classifier to achieve end-to-end
graph classification. The proposed graph classification-based
network model consists of three different network layers:
graph convolution layer, node pooling layer, and readout layer.
The details of these layers are discussed as follows.

1) Graph Convolution Layer: Message propagation
mechanism-based graph network is adopted in the design of
the graph convolution layer. The message transmission process
can be represented by two sub-functions, namely, information
aggregation function, which aggregates the information of
the current node’s neighbor nodes and combines them into
an information vector to be transmitted to the central node;
and node update function, which combines the information
vector and the current node features to update the central
node features [22], [23].

The structure of the graph convolution layer for brain
functional region perception is shown in Fig. 1. Specifically,
assuming that the nodes in the original brain graph can be
divided into R different communities and the nodes from
the same community have similar attributes, the brain graph
contains community information in addition to the origi-
nal information, and the node’s community information can
be mapped by its position information [17]. One-hot cod-
ing is used to represent the position information pi of
each node. Thus, pi of all nodes is a N-dimensional vec-
tor with only one element of 1 and other elements of 0.
The position with a value of 1 indicates the order of
this node in the entire brain functional graph, and pi is
the same for the same node in different brain functional
graphs.

To learn the community information of nodes through posi-
tion information, a two-layer perceptron is utilized to learn the
kernel of feature embedding. First, the position information
of N nodes in the brain functional graph is mapped to R
different communities through the first layer of the percep-
tron. Second, the community information is mapped to the
kernel embedding vector through the second layer of the per-
ceptron, which is finally mapped to a corresponding weight
matrix Wi.

The two parameter matrices of the two-layer perceptron in
the layer k of graph convolution are defined as b(k)

1 and b(k)
2 .

Therefore, we yield

b(k)
1 =

[
α

(k)
1 ,α

(k)
2 , . . . ,α

(k)
N(k)

]
∈ R

R(k)×N(k)
,

α
(k)
i =

[
α

(k)
i1 , α

(k)
i2 , . . . , α

(k)
iR(k)

]T
,∀i ∈

{
1, 2, . . . , N(k)

}
,

b(k)
2 =

[
β

(k)
1 ,β

(k)
2 , . . . ,β

(k)
R(k)

]
∈ R

(
d(k+1)·d(k)

)×R(k)
,

β
(k)
j =

[
β

(k)
j1 , β

(k)
j2 , . . . , β

(k)
j(d(k+1)d(k))

]T
,∀j ∈

{
1, 2, . . . , R(k)

}
.

(1)
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Fig. 2. The detailed explanation of GSF pooling layer based on structure and feature information.

Therefore, the two-layer perceptron can be expressed as

vec
(

W(k)
i

)
= fMLP(k) (pi)

= b(k)
2 φ

(
b(k)

1 ri

)
+ b(k)

0

=
R(k)∑
j=1

φ
(
α

(k)
ij

)
β

(k)
j + b(k)

0 , (2)

where b0 is the bias, and φ is the activation function.
PReLU [24] is adopted as the activation function of multilayer
perceptron to improve model adaptability.

Therefore, the dimension of the weight vector of feature
embedding obtained by the two-layer perceptron is d(k+1)d(k),
and it is mapped to obtain the weight matrix W(k)

i ∈
R

d(k+1)×d(k)
.

The weight of the edge that connects two nodes repre-
sents the strength of connectivity between the two brain
functional regions because the partial correlation matrix is
introduced as the adjacency matrix E of the brain functional
graph. This paper holds that the neighbor nodes with stronger
connections should have a greater impact on the message prop-
agation process of the graph convolution layer. Thus, the node
feature vector should be multiplied by the edge weight dur-
ing the calculation of the aggregation function. Due to the
information aggregation mechanism, to control the parameter
values obtained after the aggregation calculation of all neigh-
bor nodes to a certain order of magnitude, the weights of the
edges must be normalized [25]. In addition, a constant ampli-
fication ratio for the current node information is set in the
node update process to balance the weight of the node’s own
information and the neighbor node information in the com-
bined update. Finally, the graph convolution layer based on
the message transmission mechanism can be embodied as

h(k+1)
i = φ

⎛
⎝
(

1 + γ (k)
)

W(k)
i h(k)

i +
∑

j∈N (vi)

ϕ
(

W(k)
j h(k)

j , eij

)⎞
⎠

= φ

((
1 + γ (k)

)
W(k)

i h(k)
i +

∑
j∈N (vi)

eijW
(k)
j h(k)

j∑
j∈N (vi)

eij

)
, (3)

where φ adopts PReLU function, eij is the weight of the edge
that connects the two nodes vi and vj in the adjacency matrix E,

W is the feature embedding to be learned in the network
training process, and γ is a constant.

2) Graph Pooling Layer: Considering that the dimensions
of nodes and features in the original graph are large, a node
pooling layer between the graph convolution layers must be
introduced to obtain a subgraph with fewer nodes and fea-
tures [26]. Graph pooling, which can be roughly summarized
as static pooling [27], hierarchical clustering pooling [28],
[29], [30], [31], and node selection pooling [32], [33], [34].
Usually, only several key brain functional regions play a
key role in fMRI analysis and disease diagnosis (i.e., brain
functional activation regions). Following this idea, the node
selection pooling method is adopted, and the idea of self-
attention graph pooling [33] is utilized to pool the brain
functional graph. The graph convolution method is used to fuse
the graph structure information to calculate the node score, and
it is improved by combining the calculation method of the pro-
jection vector. Finally, the top-ranked nodes are screened by
the Top-K method [32]. The improved graph pooling opera-
tion can consider the structure and feature information of the
graph simultaneously. It adopts different node evaluation meth-
ods and utilizes the features of unselected nodes. As such, a
new graph structure-feature (GSF)-based graph pooling layer
is constructed. This graph pooling method can be applied
to graphs with different sizes and structures and has a good
node selection performance. The detailed structure is shown
in Fig. 2.

Specifically, two-node importance evaluation methods,
namely feature-based and structure-based node selection,
are used in the graph pooling layer. Most of the feature
information in the graph is contained in the feature vector of
each node, so the score of the graph feature is calculated on
the basis of these feature vectors. The formula for calculating
the node score is expressed as

s(k)
1 = 1

‖m(k)‖φ
(

H(k)m(k)
)
, (4)

where H = [h(k)
1 , h(k)

2 , . . . , h(k)
N(k) ]

T is the feature matrix formed

by node feature vectors of the k-th layer, m(k) ∈ R
d(k)

is a
mapping vector to be learned, d(k) is the dimension of the
feature, ‖ · ‖ represents L2 regularization, φ is the activation
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Fig. 3. The detailed network architecture of graph classification: SFC-GNN.

function, and s(k)
1 ∈ R

N(k)
is the final calculated score of each

node.
For structure-based node selection, considering the structure

information in node selection is crucial because the nodes and
edges in the graph and the adjacency matrix between nodes
contain much structure information. Given that the graph con-
volution process uses the graph structure information, the
graph convolution method can be used to calculate the score of
the graph structure by the adjacency matrix E and the feature
matrix H:

s(k)
2 = φ

(
GNN

(
H(k), E

))

= φ
(

D− 1
2 ED− 1

2 H(k)w(k) + H(k)w(k)
)
, (5)

where D ∈ R
N×N is the degree matrix of the sum of the

graph adjacency matrix and the identity matrix E + IN, and
w(k) ∈ R

d(k)
is the parameter vector to be learned. s(k)

2 ∈ R
N(k)

is the final score of each node calculated by graph convolution.
When calculating s1 and s1, the Sigmoid activation function

is adopted to map the values to the same interval. The final
score of each node in the brain graph is expressed as the linear
sum of s1 and s2:

s = αs1 + (1 − α)s2, α ∈ [0, 1], (6)

where α is a hyperparameter. When the value of α is 1,
the calculation method of the score is Top-K pooling based
only on feature information; and when α is 0, the calculation
method will degenerate to the method of the graph struc-
ture information-based graph convolution calculation. After
obtaining the score of each node using the aforementioned
calculation method, the nodes are sorted according to score,
and then the top t nodes are selected by the Top-K method as
the nodes retained after pooling. The updated adjacency matrix
and node features after the corresponding graph pooling layer
are obtained:

i = topk
(

s(k), t
)
,

E(k+1) = E(k)
i,i ,

H(k+1) =
(

H(k) �
[
s(k), s(k), . . . , s(k)

]
N(k)×d(k)

)

i,:
, (7)

where i represents the selected node to be retained. � rep-
resents the Hadamard product (i.e., the element-by-element
multiplication of matrix). (·)i,j represents the index operation
of matrix (i.e., select all elements specified by the row index i

and the column index j). Thus, through the graph pooling
layer, the updated output graph (V(k+1), E (k+1)) is obtained
from its input graph (V(k), E (k)). The GSF layer can reduce the
number of parameters and select the nodes important for clas-
sification. Therefore, finding brain regions related to diseases
is beneficial and makes the classification result explicable.

3) Readout Layer: The readout layer of the GNN aggre-
gates all node features in the subgraph to obtain the repre-
sentation vector of the entire graph. It can be implemented
through a graph-level pooling operation, that is, a certain node
selection strategy is used to learn graph-level features, and
the original graph is mapped into a vector containing graph-
level information. Different from the aforementioned pooling
layer, the readout layer does not consider the hierarchical
information of the graph structure and focuses on the learn-
ing of graph-level representations [35]. The readout operation
obtains graph-level features via simple permutation invariance
functions, such as by summing, averaging, or maximizing the
hidden representations of all nodes in the subgraph. Therefore,
the readout function can be expressed as:

h(k)
G = Readout

(
h(k)

v | v ∈ G(k)
)
. (8)

The readout function in this paper simultaneously maximizes
and averages all node representations of the subgraph to obtain
the final graph representation vector:

h(k)
G = max H(k)‖mean H(k), (9)

where H(k) = {h1, h2, . . . , hN(k)}, and ‖ represents the splicing
operation. To obtain the final graph representation vector, the
operations and are element-wise, and the vectors obtained in
the two ways are concatenated into one vector. Finally, the
graph representation vector hG obtained by the readout layer
will be inputted to a classifier, such as a multilayer perceptron,
to obtain the final prediction result.

4) Network Architecture: SFC-GNN: Using the three afore-
mentioned modules of the graph convolution layer, graph
pooling layer, and readout layer, the SFC-GNN model is con-
structed stacked by GNN modules, and its network architecture
is shown in Fig. 3. Each GNN module consists of a brain
region-aware graph convolution layer and a structure and the
feature information-based graph pooling layer. The forward
graph network model receives the undirected weighted brain
functional graph constructed by fMRI and its node features as
input. It stacks the GNN modules in sequence, and each GNN
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module is followed by a separate readout layer for obtain-
ing the graph representation vector processed by the module.
Finally, all the graph representation vectors obtained by the
readout layer are concatenated into a feature vector, which is
inputted into the multilayer perceptron for the prediction.

5) Loss Function: For the classification task, the model
adopts a simple cross-entropy loss function to calculate the
classification error:

Lce = 1

B

B∑
i=1

Li = − 1

B

B∑
i=1

C∑
c=1

yic · log
(
ŷic
)
, (10)

where B is the number of samples, which is usually the batch
size. C is the number of categories. yic is the sign function,
which takes 1 if and only if the true label of the sample i is
c,otherwise it takes 0. ŷic ∈ [0, 1] is the probability that the
sample i belongs to the category c predicted by the model.

For the graph pooling operation, if the scores of each node
in the graph calculated by the pooling function are similar,
then the amount of useful information contained in each node
is similar, and much useful information is lost through node
selection. Therefore, the model expects that the score gap
between the retained nodes and the unselected nodes during
the node selection process should be as large as possible. In
Eqs. (4) and (5), if Sigmoid is selected as the activation func-
tion, then the score value of the selected node is expected to be
1, and that of the unselected node tends to be 0. To achieve this
goal, maximum mean discrepancy (MMD) is introduced [36]
to define the corresponding Top-K node selection loss:

Ltopk = −‖ 1
m

m∑
i=1

ϕ(xi) − 1
n

n∑
j=1

ϕ
(
yj
)‖2. (11)

Large MMD means better performance, and the loss func-
tion needs to be minimized. Here, Ltopk takes its opposite.

In addition, the score vector s obtained by node selection
function is the result of calculating the structure and feature
information of the original brain functional graph. Therefore,
for different subjects, the difference of s may be quite large
due to the difference between their brain functional graphs.
The purpose of the graph network is to classify different brain
functional graphs to explore the commonalities of biologi-
cal patterns among different subjects under the same neural
prediction task to explore the group-level features between the
brain functional graphs of subjects that belong to the same cat-
egory in the classification results. s can be regularized to make
s of different subjects in the same category consistent. Thus,
group consistency loss [17] is introduced as a regularization
term in the loss function:

Lglc =
C∑

c=1

∑
i,j∈Dc

‖si − sj‖2

=
C∑

c=1

[
2tr
(
(Sc)

TMcSc
)− 2tr

(
(Sc)

TLcSc
)]

= 2
C∑

c=1

tr
(
(Sc)

TPcSc
)
, (12)

where C is the total number of categories, Dc is the set of
brain functional graphs that belong to this category. Sc =

[s1, s2, . . . , sm, ]T ∈ R
m×N, where m = |Dc|, Mc ∈ R

m×m

is a diagonal matrix whose diagonal elements are all m,
Lc ∈ R

m×m is a matrix with all elements 1, thus Pc =
Mc − Lc is a symmetric positive semi-definite matrix [37].
The loss function calculates the sum of the squared L2
distances between the node score vectors of two brain func-
tional graphs under the same category. Through training, the
group consistency loss function is minimized to enable the
brain graph feature under the same category to have higher
consistency.

Based on the above loss function, the final loss function of
the graph network is:

L = Lce +
K∑

k=1

α(k)L(k)
topk + β · L(1)

glc, (13)

where K is the total number of layers in the network or the
number of GNN modules. α and β are the hyperparameters
used to adjust the weight of different loss functions. For each
GNN module, Ltopk is used to calculate the distance between
the scores of the retained nodes and the unselected nodes in
the graph pooling layer. Given that the score vectors of various
brain functional graphs will be quite different after multiple
GNN modules, LGLC is only used for the first graph pooling
layer.

C. Brain Functional Graph Embedded Classification Model

Through the above SFC-GNN model, the brain functional
graph defined on each subject is outputted as a graph rep-
resentation vector. It can be used as the embedding vector of
each subject’s brain functional graph. Following this idea, each
subject i is regarded as a node, and the brain functional graph
embedding vector obtained by SFC-GNN is used as the feature
vector fi of the node. Therefore, a group-level brain network
can be constructed by combining the brain functional graphs
of all subjects. Since each node of the group network rep-
resents an individual, the group network can also be learned
by the graph network and regarded as a node classification
task for the diagnosis of brain diseases. The overall algorithm
framework is shown in Fig. 4.

The key to constructing the group network lies in the
definition of the edges in the graph (i.e., the definition
of the adjacency matrix). Given that the brain network
Gi = (Vi, Ei) of each subject level is defined according to
the correlation among brain functional regions, the graph
kernel function is adopted to measure the topological simi-
larity between the correlation coefficient matrices of subjects,
thereby obtaining the edges of the group network. The graph
kernel function can capture the similarity between the topo-
logical structures of graph data in high-dimensional space
effectively.

Here, the Gaussian kernel function is adopted to calculate
the correlation coefficient matrix of each subject (i.e., for the
brain network Gi and Gj), we yield

K
(
Ei, Ej

) = 〈
φ(Ei), φ

(
Ej
)〉 = exp

(
−‖Ei − Ej‖2

2

2

)
. (14)
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Fig. 4. The algorithm framework of group network and node classification.

Therefore, the similarity between brain networks can be
defined as

S
(Gi,Gj

) =
∑M

i=1
∑M

j=1 wiwjK
(
Ei, Ej

)
∑M

i=1 wi
∑M

j=1 wj
,

wi = 1∑M
k=1 K(Ei, Ek)

, (15)

where M represents the number of subjects, and Ei represents
the sparse adjacency matrix that corresponds to the brain func-
tional network Gi of the subject i. The size of the obtained
adjacency matrix that corresponds to the group network is
M × M. This group network is inputted into GCN for node
classification, where only one simple graph convolution layer
is used to aggregate the features between nodes:

F(1) = D̃− 1
2 S̃D̃− 1

2 F(0)W(0), (16)

where S̃ = S + IM, D̃ii = ∑M
j=1 S̃ij, F(0) = [f1, f2, . . . , fM]T is

the node feature obtained by SFC-GNN, and W(0) is the weight
matrix to be learned. The whole graph convolution process
can be regarded as Laplace smoothing on the group network
structure. The feature matrix obtained through this graph con-
volution layer is also inputted into a two-layer perceptron to
obtain the final classification vector. Then, cross-entropy is
adopted to calculate the loss, and the average of all nodes is
obtained.

Inductive learning is used to train and infer the node classi-
fication model. The model learns from the nodes that belong
to the training set and then generalizes them to other unseen
nodes. Specifically, a group network is constructed on the basis
of all the subjects in the dataset [21].

IV. EXPERIMENT RESULTS

A. Dataset and Preprocessing

Two brain imaging datasets, namely, the ABIDE dataset [38]
and the ADNI dataset [39] are utilized for experiments and

comparative analysis. For the ABIDE dataset, 1035 subjects
are divided into autistic patients and healthy controls. For the
ADNI dataset, 134 independent subjects are divided into AD
patients and mild cognitive impairment patients.

B. Implementation Details

All experiments in this paper are carried out on a computer
with a single RXT2080Ti graphics card, and the deep learning
framework Pytorch is used for the model construction and the
training and testing of the algorithm. All subjects’ data are
randomly shuffled, and experiments are conducted in a cross-
validation manner. The Ranger optimizer [40] is used for the
optimization of all models with an initial learning rate of 0.01,
which is reduced to half the original value every 20 epochs and
a weight decay of 0.0005. The maximum number of iteration
cycles of the network is set to 100, and the batch size is set
to 16. For the network model, the number of communities
R is set to 8, and PReLU is used as the activation function
in the two-layer perceptron. In addition, to avoid overfitting,
dropout regularization is added after the graph pooling layer,
and nodes are randomly dropped with a probability of 0.5
during training. Precision, Recall, F1 scores, and ROC curve
are used to evaluate the performance of the model.

C. Comparative Models

To measure the performance of the proposed SFC-GNN
model, a series of comparative experiments is conducted
between the proposed model and nine existing classification
models on the autism diagnosis task with the ABIDE dataset.
The comparison models include four traditional machine
learning-based models (e.g., SVM, K-nearest neighbor (KNN),
decision tree (DT), and RF), two typical neural network-based
models for processing time-series signals (e.g., LSTM [41]
and TCN [42]), and three top-performing graph network-
based models on fMRI (e.g., GAT [43], LI_NET [16], and
BrainGNN [17]).

Experiments are conducted on the ABIDE and ADNI
datasets under 10 different classification models to compare
the performance of various algorithms on the disease diag-
nosis task. The preprocessing of experimental data and the
input form vary for different types of models. For machine
learning-based models, the upper half of the matrix is vec-
torized, and the principal component analysis method, which
removes redundancy and retains 99% of the original data,
is used to reduce its dimension after the correlation coeffi-
cient matrix is constructed from the average time-series. The
final input of the model refers to the correlation coefficient
of the brain functional regions in vector form. In addition, to
avoid affecting the performance of the machine learning-based
model due to improper hyperparameter settings, the grid search
method is used to search for the best parameter combination
of the model, and then the best model is fitted automatically.
For LSTM and TCN, the neural network-based models, the
average time-series of all brain functional regions is directly
used as the input of models. For all graph network models,
the same brain functional graph is defined as the input similar
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TABLE I
RESULT COMPARISON OF TEN CLASSIFICATION

MODELS ON ABIDE DATA

to that in Section III-A, and the original parameter settings in
the related papers are used.

First, comparative experiments are conducted on the ABIDE
dataset to compare the recognition rates of autistic patients. For
the ABIDE dataset, the experiment is conducted by tenfold
cross-validation, and the three indicators (precision, recall and
F1 score) are used to measure the performance of the model
in recognizing the two categories (ASD patients and healthy
control groups). Table I shows the average of the tenfold cross-
validation results. All results are obtained on the validation set.
The comprehensive result shows that in the ASD diagnosis
task, SVM is the model with the best performance among all
machine learning-based methods, and its values on three indi-
cators are mostly higher than those of KNN, DT, and RF. The
performance of the deep learning-based models is generally
better because they can extract rich deep features when deal-
ing with complex data. The comprehensive performance of the
graph network-based model is the best among the three kinds
of models. For the two neural network models (LSTM and
TCN), regardless under which indicator, the performance of
the models on the two categories of healthy control groups and
ASD patients is quite different. The recall and F1 score of the
two models in the ASD category are much higher than those
of the healthy control group, whereas the precision of the ASD
patient category is slightly lower than that of the healthy con-
trol group, indicating that the two models have good detection
performance on patients with autism. However, healthy people
are more likely to be misdiagnosed as patients with autism.
In addition, compared with the TCN model, the performance
of the LSTM model is more unstable, and the results of the
10 experiments are very scattered because these two models
directly use the average time series as input. More redundancy
and noise exist in the data, and the truly useful information
has not been effectively extracted. The lengths of time series
from different image sites are inconsistent, thereby causing the
model to be disturbed and resulting in poor performance.

Among the four graph network-based models, the proposed
SFC-GNN model achieves the best average results in classifi-
cation precision and recall under the two categories of healthy
controls and ASD patients in the ABIDE data. In the col-
umn of recall of ASD patients, TCN achieves the best results.

Fig. 5. The comparison of ROC curves and AUC values of ten classification
models on ABIDE dataset.

However, its average recall in the healthy control group is the
lowest, only 37.65%, which indicates that the model predicts
a large number of healthy people as autistic patients, so the
effect of TCN is not reasonable. Compared with other graph
network-based models, the SFC-GNN model can achieve bet-
ter performance because the graph pooling layer can select
nodes that are more important for classification tasks, and the
penalty term of the node score in the loss function further
guides the pooling layer to retain more informative nodes. In
addition, although deep learning-based method is limited by
the amount of data available on ABIDE dataset, our method
can achieve good results, which proves the effectiveness of the
proposed architecture.

Taking ASD patients as the positive category, the receiver
operating characteristic (ROC) curve is drawn for each model
to further demonstrate its performance on the ASD diagno-
sis task. Fig. 5 shows the best result for the area under the
curve (AUC) of each model. ROC curve and AUC value fur-
ther illustrate that the graph network-based model has better
performance than other models, and the proposed SFC-GNN
model has certain advantages in the autism diagnosis task.

The same comparison experiment is performed on ADNI
data. The HO atlas is used for the segmentation of the sub-
ject’s fMRI data, and the sparse brain network is constructed
using the top 10% as the threshold. Fivefold cross-validation
is conducted on 10 classification models. Given that the ADNI
data selected in this paper only contains 34 AD patient data,
an imbalance of positive and negative samples is observed.
Thus, AD patients are taken as the positive category. As shown
in Table II, the results are compared under four indicators:
weighted precision, weighted recall, weighted F1 score, and
AUC value. Since weighted recall is equivalent to accuracy,
no separate comparison of model accuracy is presented here.

The SFC-GNN model achieves the best average results on
the evaluation metrics, which shows the effectiveness of SFC-
GNN for AD diagnosis. For most classifiers, the weighted
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TABLE II
COMPARISON OF RESULTS OF CLASSIFICATION MODELS ON ADNI DATA

recall is higher than the weighted precision because of the
imbalance of positive and negative samples and the classifier’s
tendency to classify samples as negative. Only SVM, GAT,
and SFC-GNN are less affected by the imbalance of sam-
ples, thereby resulting in higher F1 scores. However, because
the ADNI data used for the experiment are too small, the
model may overfit the training set and have poor generalization
performance. When calculating the AUC value, AD patients
with a small number of samples are taken as the positive cat-
egory, so the AUC value of all models is low. However, graph
classifiers generally obtain higher AUC values compared with
other classification methods, thereby showing that the brain
functional graph definition method proposed in this paper can
overcome the problem of sample imbalance to a certain extent
and improve the model’s ability to identify small categories.

D. Group Networks and Transfer Learning

1) Group Networks: To further improve the performance of
FC-GNN for brain disease diagnosis, a corresponding group
network is constructed for 134 subjects in the ADNI dataset
according to the method proposed in Section III-C. Fivefold
cross-validation is performed in the experiment.

First, the feature embedding vector of each subject’s brain
functional graph is obtained by the output of the second graph
pooling layer in the trained SFC-GNN. Then, in the node clas-
sification task, the embedding vectors of all subjects in the
training set and the adjacency matrix constructed by the sim-
ilarity between brain functional graphs are inputted into GCN
for training. Finally, the prediction is made on the validation
set. In the forward inference process, the input embedding vec-
tor and adjacency matrix include all the subjects in the training
and validation sets. The feature embedding vector is also
obtained from the trained SFC-GNN. In the adjacency matrix,
except that the brain functional graph similarity between sub-
jects in the validation set is 0, the other values are calculated
by the Eq. (15), so that GCN can generalize the classifica-
tion criteria learned through the training set to the validation
set. According to the results in Table III, compared with the
separate SFC-GNN model, by further constructing the group
network and inductively learning the node classification-based
GCN, the precision and recall of AD diagnosis on ADNI data

TABLE III
COMPARISON OF ABLATION EXPERIMENT RESULT

increase by 4.15% and 3.02% respectively, but the AUC value
is reduced by 3.08%. This finding suggests that the classifica-
tion accuracy can be improved by constructing individual-level
brain functional networks and group networks and capturing
the topology information of brain functional networks and the
similarity between subjects. However, it is greatly affected
by the problem of sample imbalance. During node classifi-
cation, the prediction of unseen nodes will be more affected
by numerous types of nodes in its neighborhood.

2) Transfer Learning: With only 134 samples, the amount
of ADNI data is relatively small. Deep learning-based mod-
els often require a large amount of data for training, so small
samples may be one of the reasons for the low model accu-
racy. Transfer learning is often used in various medical image
tasks based on deep learning. However, it is often the transfer
from natural image tasks to medical image tasks. Natural and
medical images have huge differences in imaging principles
and intrinsic characteristics. Thus, this transfer is not neces-
sarily applicable. Considering that some correlation may exist
among different brain diseases, here we explore to transfer
from ABIDE data to ADNI data to discuss whether the transfer
among different brain diseases can improve the generalization
ability of the model.

The brain functional network is constructed on the ABIDE
data segmented by the HO atlas and then inputted to the
SFC-GNN for the training to obtain a pre-trained model.
The pretrained model is fine-tuned on the ADNI data. Two
transfer learning approaches are considered here, one is to
pretrain the entire SFC-GNN model and then fine-tune it
under the brain functional network constructed from ADNI
data (TLGNN12+SFC-GNN). The other is to use only the
first GNN module in SFC-GNN as a pre-trained model,
whereas the second GNN module under the ADNI task is still
trained from random initialization (TLGNN1+SFC-GNN).
The results in Table III show that the transfer learning from
ASD to AD can improve the AD diagnosis performance of the
model, and the AUC value is increased by 3.23%. Compared
with the pre-training of the entire SFGNN, pre-training only
on the first GNN module can achieve relatively better results.
The above experimental results show that some inherent brain
functional network topology may exist between the data of AD
and ASD, and this makes the transfer learning between the two
datasets contribute to the improvement of model performance.
However, the activation of brain functional regions among dif-
ferent brain diseases (i.e., the brain functional regions that are
more important for the diagnosis tasks of AD and ASD are
different) vary. Then, the nodes retained by the graph pooling
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layer are different. Therefore, compared with transferring the
entire SFC-GNN model, better AD diagnosis performance can
be achieved by only transferring the first graph convolution
layer.

The model that combines transfer learning and node
classification of group networks (TLGNN1+SFC-GNN+NC)
achieves the best AD diagnosis performance in the experi-
ment. The AUC value is improved by 9.51% compared with
the benchmark SFC-GNN model. The experiment shows that
some correlation may be observed between the two brain dis-
eases, namely, ASD and AD, and the graph network-based
model for the brain disease diagnosis can be transferred
across related diseases to overcome the overfitting problem
in small image datasets, thereby improving the generalization
performance of the disease diagnosis model.

V. CONCLUSION

A low-parameter and interpretable brain disease diagno-
sis model called SFC-GNN is proposed, and the construction
methods of sparse brain graph and group network are defined
for the high complexity of the brain functional network and its
unique topological structure. The diagnosis of AD and autism
are conducted on the basis of graph classification and node
classification. Our model combines the convolution layer of
brain functional region perception and the graph pooling layer
of node selection to build a network architecture and uses the
topology of brain functional graph and node features to iden-
tify important brain functional regions, thereby reducing the
number of parameters and improving the interpretability of the
model. In addition, SFC-GNN is further extended to a node
classification model by defining the group network. The com-
parative experiments on the ABIDE dataset and the ADNI
dataset show that the SFC-GNN model has better disease
diagnosis performance. The experimental results of transfer
learning between two brain diseases indicate the potential
correlation among different brain diseases.
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